

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction Yuan-Ting Hu¹, Alexander G. Schwing¹ and Raymond A. Yeh² ¹ University of Illinois Urbana-Champaign, ² Purdue University

1. Introduction

Single Image 3D Shape Reconstruction

- Reason about the 3D geometry of objects from a monocular image
- Motivation
- To better utilize the monocular cue, i.e., surface normal
- Contributions
- A novel optimization layer **surface snapping Layer**
- Improve 3D reconstruction quality

Input Image

Normal Estimate

W/o Surface Snapping With Surface Snapping

3. Surface Snapping Layer

- Input: shape $\widehat{\mathbf{M}}^{l} = (\widehat{V}^{l}, \widehat{F})$ and normal estimate \widehat{N}
- **Output**: the refined shape $\widehat{\mathbf{M}}^{l+1} = (\widehat{V}^{l+1}, \widehat{F})$ with vertices updated by the following objective

$$\widehat{V}^{l+1} \triangleq X^* = \operatorname*{argmin}_{X} C_V(X, \widehat{V}^l) + \alpha C_N(X, \widehat{N})$$

- Vertex cost $C_V(X, \widehat{V}^l) = \|X \widehat{V}^l\|_2^2$
- Normal cost $C_N(X, \widehat{N}) = \sum_{i=1}^{N_F} \sum_{i,k \in \widehat{F}_i} \langle \widehat{N}_i, X_j X_k \rangle^2$
- N_F : the number of faces \hat{N}_i : normal of the i^{th} face
- \widehat{F}_i : the i^{th} face
- *X*: optimization variable • Solve by using an efficient conjugate gradient solver, use the sparsity pattern
- End-to-end trainable
- The weighting term α is learnable
- Learnt with the other parameters in the deep net

Ablation Study

 Qualitative effe stronger snapp

Surface Normal

· Quantitative ef

		Pix3D S
	AP ^{mesh}	Normal
lpha = 0.0	53.4	21.5
$\alpha = 1.0$	53.4	22.2
$\alpha = 2.0$	52.7	21.4
α learned	54.1	23.0

Quantitative

Method / $\%$
Pixel2Mesh ⁺ (Wang et al
Sphere-Init
Mesh R-CNN (Gkioxari et
GCN Transformer
Pixel2Mesh ⁺
Sphere-Init
Mesh R-CNN
GCN Transformer

2. Overview

4. Experimental Results

• Quantitative Results Pix3D Split 2

Jlu	uy								•	Quantilativ	e res
effe	ct of su	irface	e snap	ping. L	_arge	r valu	les of	α result in		Method / %	chair sofa table
napp No snay α =	ing ^{pping}	α	= 0.5		$\alpha = 1.0$		$\alpha = 2$	2.0	Baseline	Pixel2Mesh ⁺ (Wang et al., 2018) Sphere-Init Mesh R-CNN (Gkioxari et al., 2019) GCN Transformer	26.758.510.932.9 75.3 15.8 42.7 70.827.242.968.826.5
									Snap+	Pixel2Mesh ⁺ Sphere-Init Mesh R-CNN GCN Transformer	26.960.910.031.272.711.741.474.7 28.1 42.275.328.6
		No.		and the second s	V		V		•	Qualitative	resul
'e eff	ect of s	surfac	ce sna	apping				Input		Ground-truth	Mesh R-0
x3D S_1	Normal ^{Vis}	Δ P ^{mesh}	Pix3D S_2	Normal ^{Vis}	-			Care C			
21.5 22.2 21.4 23.0	45.4 47.1 44.8 48.8	29.1 28.7 28.5 29.9	21.4 20.8 21.6 23.0	46.5 44.7 44.6 49.7	-			P		T	
ive	Resul	ts P	ix3D S	Split 1	-						
., 2018)	chair sofa table30.959.140.975.244.2	<i>bed desk b</i> 40.5 30.2 5 50.3 28.4 4	bkcs wrdrb tod 50.8 62.4 18. 48.6 42.5 26.	<i>al misc</i> AP ^{box} 2 26.7 93.5 9 7.0 94.1	AP ^{mask} AP ^{me} 88.4 39.9 87.5 40.5	^{28h} Normal No 9 18.0 5 15.3	ormal ^{Vis} 39.8 39.0	11			1
al., 2019)	48.2 71.7 60.9 49.9 74.3 67.3	53.7 42.9 7 50.5 42.8 7	70.2 63.4 21. 7 5.4 68.9 37 .	.6 27.8 94.0 .4 33.3 94.1	88.4 51.2 88.3 55.5	2 21.6 5 23.3	46.5 49.6			A	
	32.3 61.8 43.9 35.1 61.7 44.1 49.0 74.8 65.3 49.5 76.5 64.3	42.8 33.5 4 40.0 31.3 5 55.7 46.1 7 56.0 44.3 7	46.0 74.3 4.3 55.7 46.1 23. 73.8 70.9 21. 73.8 70.9 31.	5 26.7 93.5 .6 13.5 94.1 .6 27.8 94.1 .8 33.4 94.1	88.4 40.7 87.6 39.0 88.3 54.1 88.3 55.0	7 19.4 0 17.1 1 23.0 5 23.8	43.3 39.0 48.8 50.4	Π'			M

Problem definition

- Given: an image
- Goal: predict the object shape characterized by a triangular mesh $\mathbf{M} = (V, F)$

Approach overview

- Iteratively update the initial mesh using the refinement module and the proposed surface snapping layer
- Surface snapping optimizes the vertices of the mesh to match to the estimated normal

bed	desk	bkcs	wrdrb	tool	misc	AP ^{box}	AP ^{mask}	APmesh	Normal	Normal ^{Vi}
38.5	7.8	34.1	3.4	10.0	0.0	71.1	63.4	21.1	19.5	42.2
40.1	10.1	45.0	1.5	0.8	0.0	72.6	64.5	24.6	15.7	40.0
40.9	18.2	51.1	2.9	5.2	0.0	72.2	63.9	28.8	21.4	46.5
40.7	22.9	44.6	1.2	0.5	0.0	72.4	64.0	27.5	22.1	48.8
38.7	10.0	25.3	4.2	10.1	0.0	71.1	63.4	20.7	20.5	44.7
42.1	7.8	38.2	1.0	1.2	0.0	72.6	64.5	22.9	16.0	40.2
42.6	20.1	50.4	2.9	3.7	0.0	72.4	64.0	29.9	23.0	49.7
41.3	21.1	50.0	2.8	6.1	0.0	72.4	64.0	29.7	23.3	49.7

• Failure cases of our approach

Surface normal estimation is not accurate

Input

Surface Normal

Failure Case

results

